Pseudo-Valuation Near ring and Pseudo-Valuation N-group in Near Rings
Authors
Abstract:
In this paper, persents the definitions of strongly prime ideal, strongly prime N-subgroup, Pseudo-valuation near ring and Pseudo-valuation N-group. Some of their properties have also been proven by theorems. Then it is shown that, if N be near ring with quotient near-field K and P be a strongly prime ideal of near ring N, then is a strongly prime ideal of , for any multiplication subset S of N. In addition, they obtained the relation between strongly prime ideal and strongly prime N-group, and also between Pseudo-valuation near ring and Pseudo-valuation N-subgroup. It has also shown that if every N-subgroup be ideal of M and P be a strongly prime N-subgroup of M, then (P: M) is a strongly prime ideal of N. And in the end it is proved that if P and L of N-subgroups M and Psubset of L such that for any y in K ,y-1P subset of P , then L is a strongly prime N-subgroup of M if and only if L/p is a strongly prime N-subgroup of M/p .
similar resources
Pseudo-almost valuation rings
The aim of this paper is to generalize thenotion of pseudo-almost valuation domains to arbitrary commutative rings. It is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordere...
full textOre Extensions over near Pseudo-valuation Rings
We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal. Let R be a commutative ring, σ an automorphism of R. Recall that a prime ideal P of R is σ-divided if it is comparable (under inclusion) to every σ-stable ideal I of R. A ring R is called a σ-divided ring if every prime ideal of R is σ-divided. Also a ring R is almost σ-divided r...
full textOre Extensions over near Pseudo-valuation Rings and Noetherian Rings
We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal. Let R be a commutative ring, σ an automorphism of R and δ a σderivation of R. We recall that a prime ideal P of R is δ-divided if it is comparable (under inclusion) to every σ-invariant and δ-invariant ideal I (i.e. σ(I) ⊆ I and δ(I) ⊆ I) of R. A ring R is called a δ-divided ring...
full textpseudo-almost valuation rings
the aim of this paper is to generalize thenotion of pseudo-almost valuation domains to arbitrary commutative rings. it is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordere...
full textMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
full textCompletely Pseudo-valuation Rings and Their Extensions
Recall that a commutative ring R is said to be a pseudo-valuation ring if every prime ideal of R is strongly prime. We define a completely pseudovaluation ring. Let R be a ring (not necessarily commutative). We say that R is a completely pseudo-valuation ring if every prime ideal of R is completely prime. With this we prove that if R is a commutative Noetherian ring, which is also an algebra ov...
full textMy Resources
Journal title
volume 6 issue 24
pages 65- 76
publication date 2020-05-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023